
Ten Commandments Revisited
A Ten-Year Perspective on the Industrial Application of Formal Methods

Jonathan P. Bowen
London South Bank University

Institute for Computing Research, Faculty of BClM
Borough Road, London SEI OAA, UK

www.jpbowen.com
jonathan. bowen@lsbu.ac.uk

ABSTRACT
Ten years ago, our 1995 paper Ten Commandments of Formal
Methods [5] suggested some guidelines to help ensure the success of
a formal methods project. It proposed ten important requirements
(or “commandments”) for formal developers to consider and follow,
based on our knowledge of several industrial application success
stories, most of which have been reported in more detail in two
books [17],[18]. The paper was surprisingly popular, is still widely
referenced, and used as required reading in a number of formal
methods courses. However, not all have agreed with some of our
commandments, feeling that they may not be valid in the long-term.
We re-examine the original commandments ten years on, and
consider their validity in the light of a fiuther decade of industrial
best practice and experiences.

Categories and Subject Descriptors
D.3.3 [Sofhvarek’rogram Verification]: Formal methods.

General Terms
Design, Economics, Experimentation, Human Factors,
Standardization, Languages, Theory, Verification.

Keywords
Formal methods, correctness, industrial application, software
engineering.

1. INTRODUCTION

It is clear to the best minds in the field that a more
ma~heniatical approach is needed for sofiare to advance
much.

- Bertrand Meyer

Copyright 2005 Association for Computing Machinery. ACM
acknowledges that this contribution was authored or co-authored by a
contractor or affiliate of the U.S. Government. As such, the Government
retains a nonexclusive, royalty-free right to publish or reproduce this
article, or to allow others to do so, for Government purposes only.
FMCS’O5, September 54,2005, Lisbon, Portugal.
Copyright 2005 ACM 1 -59593-148-1/05/0009...$5.00.

Michael G. Hinchey
NASA Software Engineering Laboratory

Goddard Space Flight Center
Greenbelt, MD, USA

sel.gsfc.nasa.gov
Michael.G.Hinchey@nasa.gov

We, as the formal methods community, are (presumably)
convinced of the validity of formal approaches to software
specification, design, implementation, and subsequent maintenance.
In fact, it seems a logical argument to “Formal Methodists”, for
whom formal methods are a “religion,” that the introduction of
greater rigor into software development will result in improvements
both in the software itself and in the development process.

Unfortunately, the rest of the world (and the software
engineering community, in particular) has not been convinced on a
wide scale, despite a significant number of success stories [17],[IS].
At least their existence is now acknowledged by most [8], and their
usehlness is accepted by some [41]. Certain aspects of formal
methods, such as assertions in programs [20], are widely used,
although not as much as originally anticipated. However, many
myths regarding formal methods, first identified as far back as 15
years ago [6],[161 still abound.

Holloway [22] points out that the typical argument in favor of
formal methods (that software is bad, unique, and discontinuous;
that testing is inadequate; and that formal methods are essential to
avoid design flaws) is logically flawed, and unnecessarily complex
(in logical terms). He proposes a simpler argument, which is both
simple and logically valid: software engineers want to be “real”
engineers; such engineers apply mathematics; and since formal
methods is the mathematics of software engineering, software
engineers should use formal methods.

Nevertheless, formal methods are still not widely used outside
the specialized formal methods community. Our original Ten
Commandments of Formal Methods [5] were aimed at encouraging
the practical use of formal methods among the software engineering
community as a whole, and, more importantly, to provide some
practical guidance to formal methods practitioners based on insights
received fiom a number of real-life projects, many of which were
reported in [17],[18]. The hture of foimal methods was also
considered by others at around the same time [lo].

Given the lack of acceptance of the use of formal methods
outside our own specialized group of people, the former was at best
a vely limited success (or perhaps even a failure!). But we were
considerably more successful in achieving the latter goal.

Over the intervening ten years, we have received many
comments and much feedback on our “commandments”. They have
been widely cited, and included in several textbooks (e.g., see [36])
and are recommended (or even required) reading for a number of
academic courses. Naturally, not everyone agrees with all of them.

They did not do so when we first published them in 1995, pointing
out that many of them would not necessarily hold in the long term,
so it is not surprising that not everyone agrees with them now.

the T~~ Commandments of Formal
Methods in the light of a further ten years of industrial best practice.

However, the original intent of our commandment (“thou shalt
choose an appropriate notation”) concerned a notation that was not
“appropriate” in the sense that it was easily understood by non-
specialists, but “appropriate” in that it was useful in describing the

with that system. While
several of the more popular notations (ex.. B. Z. CCS. CSP) have

this paper, we
at hand in a manner *at fits

2.

Any intelligeni fool can make ihings bigger and more
complex ... It takes a touch of genius and a lot of courage io
move in the opposite direction.

- Albert Einstein (1879-1955)

REVISITING THE COMMANDMENTS

He proclaimed to you his covenant, which he commanded
you to keep: the Ten Commandments, which he wrote on
two tablets of sione.

- Deut.4:13, 10:4, Ex.34:28

I. Thou shalt choose an appropriate
notation.

Notations are a 3equent complaint ... but ihe real problem
is to understand the meaning andproperties of the symbols
and how they may and may not be manipulated, and to gain
fluency in using ihem io express new problems, solutions
and prooji. Final&* you will cultivate an appreciation of
mathematical elegance and style. By that time, the symbols
will be invisible; you will see straight through them to what
they mean. The great advantage of mathematics is that the
rules are simpler than those of natural language, and the
vocabulary is much smaller. Consequent&, when presented
with someihing unfamiliar it is possible to work out a
solution for yourself; by logical deduction and invention
rather than by consulting b o o b or experts.

- C.A.R. Hoare

The use of mathematical notation is often cited as a reason for
the slow uptake of formal methods and an inhibitor to their
successful use in industrial applications. However, as we pointed out
in [6], the mathematics of formal methods are actually relatively
simple, and exploits notations and concepts that should be well-
understood by computing professionals (set theory, propositional
and predicate logic, etc.). While we concede that non-professionals
may not be so au fait with such notations - which makes
communication more difficult, in particular with system procurers,
who in many cases are the people with whom the formal specifier
most needs to communicate - in general, the notations are not
beyond the understanding of well-educated software engineers.

The formal methods community must also take some of the
blame for this: all too often we find authors of technical papers
introducing new symbols, Greek hieroglyphics, which are just
alternative ways of representing existing operators and concepts.
This kind of obfuscation should be avoided if possible.

. . . -
emerged and have widespread applicability to a broad range of
classes of system, it has been found in many cases that a
combination of languages is needed to adequately address all
aspects of a larger system. It has been argued that no single notation
will ever be suitable to address all aspects of a complex system, with
the implication that future systems will require combinations of
model-based methods, process algebras, and temporal (and other)
logics, in particular as we build more sophisticated, advanced, and
ambitious systems.

Table 1 illustrates just some of the wide range of “hybrid” formal
methods that have emerged over the last decade, indicating a need to
augment existing notations with concepts that address specific
aspects of a system. These vary in the means by which they are
combined, which we categorize as:’

Viewpoints (loosely coupled): different notations are used to
present different “views” of a system with each notation
making emphasis of, or understand of, a particular aspect of
the system (e.g., representing timing constraints) [9].

Method Integration (close coupling): several different
notations (both formal and informal or semi-formal) are
used with (manual or automatic) translation between
notations being used both to provide a semantics for the less
formal notations and to enable graphical (or other)
presentations that are well-understood, while simultaneously
affording the benefits of formal verification [40].

Integrated Methods (tight couplingJ: multiple notations are
used along with a single notation (e.g., propositional logic)
used to give a uniform semantics to each notation [46].
At the time we published [5], method integration was very

popular and it seemed that there would be a greater move towards
Integrated Methods. While certainly there has been more progress in
these fields, it seems that a Viewpoints approach has been winning
out, perhaps due to reluctance by industry to take up full formal
proof (that the more coupled approaches would support) and
reluctance to get involved in semantic details. The Integrated
Formal Methoak conference [2] continues to provide a forum for
this research topic.

Choosing thc right notation can great aid in abstraction, in
hiding unnecessar); detail and unnecrssar?; complexity, where is
where (many argue) the leal benefit offonnal melhods ci most be
felt.

ul could say it in usords there would he no reason iopaort
-Edward Hopper (1882-1967)

’ Our terminology and classification may differ from those of
other authors.

Table 1: A sample of some hvbrid formal methods

Name

Temporal
B

zccs

CSP oz

Object Z

PiOZ

II.

Back in

(developed since our 1995 paper [5]) .

Combines Advantage Reference

B, temporal Adds time to the B- Bonnet et
logic Method al. (1 995)

[I1

z, CSP Combines Z and Fischer
CSP (2000) [131

x-calculus dynamic ai. (2004)
[451

Object-Z

Thou shalt formalize but not
over formalize.

1995. we advocated the need to distinguish between -
formalization “for the sake of it”, and appropriate use of
formalization. We highlighted the fact that there were areas where
foimal methods could be applied, but were not necessarily the most
appropriate technique (e.g., user interface design).

Indeed, it was also one of our Seven More Myths ojFormal
Methods [6] that “formal methods people always use formal
methods”; in reality, they do not. Also in [6], we advocated the use
of formal methods when appropriate, and emphasized that many of
the highly publicized projects touted as great success stories have in
fact only involved formalizing small parts (often 10% or less) ofthe
system. (We also reported that, regrettably, at that point most formal
methods toolsets had not been formally developed. To our
knowledge this is still largely the case, although PerfectDeveloper
[1 I] has made some attempt in this direction.)

The formal methods community has taken this somewhat to
heart. Jones introduced the idea of lightweight formal methods with
“Formal Methods Light” [39], which more or less equates to level
zero of the three levels of formalization we proposed back in 1995,
illustrated in Table 2.

It is certainly true that much benefit can accrue through the use
of formality only at the level of requirements specification (Level 0).
The importance of getting requirements right at the outset cannot be
overstated. Figure 1 shows a graph of investment in the
requirements phase of NASA projects and missions plotted against
the cost of project ovemns. The obvious “demand curve”
emphasizes that getting requirements right has major payback later

(or, conversely, that not getting requirements right will come back to
haunt you later!).

Table 2: Levels offormality.

Level Name Involves

0 Formal Specification Formal notation used for
specifiing requirements
only; no analysis/proof

1 Formal Proving properties and
Development/verification applying refinement

CalCUlUS

prover/checker to prove
consistency and/or

integrity.

2 Machine Checked Proofs Use of theorem

It is clear that the use of mathematically-based approaches has
the potential to help eliminate errors early in the design process,
rather than trying to remove them in the testing phase, or, worse,
after deployment. Consequently, it i s true that the use of formal
methods in the initial stages of the development process can help to
improve the quality of the later software, even if formal methods are
not used in subsequent phases of development.

Strange as it seems, no amount of learning can cure
stupidity, and formal education positivelv fortiles it.

- Stephen Vizinczey

0 -

ISEE

Figure 1: Requirements phase costs compared with project oveiivn
costs (source: W. Gruhl, NASA Comptroller’s Office).

III. Thou shalt estimate costs.

Earlier dr&s of our 1995 paper commanded “Thou shalt
guestimate costs”. The term “guestimate”, a hybrid of “guess” and
“estimate” was an attempt to indicate that this is far 60m a precise
science, involving a lot of guesswork?

Notwithstanding the existence of several excellent cost
estimation models (such as CoCoMo 11, etc.), cost estimation is still
far i?om an exact science. There have been many notable examples
of system development where costs greatly exceeded estimates: for
example, the Darlington power plant and the Space Shuttle software
where cost overruns were significantly more than were foreseen. In
[5], we strongly advocated both initial and continuous cost
estimation.

We concede that in many cases, this may still be guesswork. In
particular, research shows that organizations spend 33% to 50% of
their total cost of ownership (TCO) on preparing for, or recovering
from, failures. While hardware costs continue to fall, TCO continues
to rise and system availability (and hence reliability) is falling [44].
Therefore any cost estimates are likely to be unrealistic andlor
understated.

However, we still firmly believe that having an estimate of costs,
and also, ideally, an estimate of anticipated costs were formal
methods not employed, is essential to convincing the software (and
hardware) development communities that formal methods can
indeed produce better systems cheaper.

I think that God in creating Man somewhat overestimated
his ability.

- Oscar Wilde (1854-1900)

IV. Thou shalt have a formal methods
guru on call.

Our experience prior to 1995 was that most successful formal
methods projects had significant support in the guise of a formal
methods expert, or “guru”. Many projects had several such gurus
available to guide and lead the formal development process, to
provide advice on complex aspects, and in some cases to
compensate for the lack of experience of the development team in
applying formal methods.

Perhaps one might infer l?om this that it suffices to have access
(occasional or regular) to an expert who is not actually part of the
team.

In reality, all members of the software project team must
understand the applicability of formal methods and contribute in
ways that help ensure success. It is only too easy for any member of
a team, whether on the management or technical side, or both, to
prevent their effective use. Formal methods require effort, expertise,
and significant knowledge in order to be successful. However, the
rewards can be great if the right mix of people is available. Not
everyone in a team needs the same level of proficiency in the
application of formal methods, but all must have an appreciation of
their role. Lack of understanding will almost certainly result in

Unfortunately the copyeditor did not approve of the term.

disaster. This is perhaps why formal methods are still not trusted in
some quarters.

It is still particularly important that the manager of the team
understands the shift of emphasis of effort towards earlier phases of
the development cycle (e.g., specification), with the potential to reap
the rewards in the later phases (e.g., during testing).

An expert is a person who has made all the mistakes that
can be made in a v e v narrowfield.

-Niels Bohr (1885-1962)

V. Thou shalt not abandon thy
traditional development methods.

In the last decade, the use of UML (Unified Modeling
Language) has become increasingly important and ubiquitous in
industrial software development. A criticism that has been leveled at
UML is its lack of foimality. However, there has been much work
by the formal methods research community in considering the role
of formality in the context of UML [13],[25] and a pUML (precise
UML) group has been formed. Work is underway to allow tool-
based integration of the B-Method with UML [43]. Even the UML
community recognizes that improvements could be made in this
direction and developments in UML are likely to include more
formal aspects.

Object-oriented techniques are also widely used and there has
been much research on object-oriented extensions to formal
methods, especial the Z notation (for example, Object-Z [42]). In
addition, there are formal methods tools aimed at object-oriented
development, such as PerfectDeveloper [113. Using such a tool may
be more attractive to software engineers who are used to developing
systems using programming languages such as Java.

Work has also been undertaken to address formality in Model-
Based Development (MBD), and to increase formality in
Requirements-Based Programming [37], an approach that aims to
systematically transform requirements into executable code, having
many of the advantages of automatic programming, but avoiding
one major deficiency, namely that automatic programming specifies
a solution rather than the problem to be solved [35].

.4 great many of those who ‘debunk’ traditional ... values
have in the background values of their own which they
believe to be immune from the debunking process.

- C. S. Lewis (1898-1963) The Abolition ofMan

VI. Thou shalt document sufficiently.

The IS0 standard for the Z notation was accepted in 2002 after
nearly a decade of effort in its production [24]. This was perhaps an
example of over-documentation, since much of the time was spent
foiinalizing (a revised version 00 the Z notation. However, the
process did reveal some awkward comers in the semantics, and so
could be considered a success froin this point of view. But progress
was slow and painstaking.

It is felt that in addition to the benefits of abstraction,
clarification and disambiguation, which accrue fiom the use of
foimal methods at Level 0 according to OUT classification (see
Commandment 11), using formal methods at the level of formal
specification provides invaluable documentation. Experience has
shown that quality documentation can greatly assist in future system
maintenance.

All development involves iteration. It is important that
documentation reflects that fact. Often when changes are made to
system implementations, a record of the changes is not made and
updates are not made to the related documentation. If we truly are
developing systems formally, formal methods help us to avoid this
inconsistency, as the formal specification itself forms part of the
documentation.

Additionally, proper documentation of decisions made during
the formal specification process is important. This is why we have
previously always advocated augmenting formal specifications with
sufficient natural language narrative. It is critical that a proper
“paper trail” is available. Abstraction is a very usel l tool, but it
requires proper documentation, or it may result in the loss of useful
information.

One of the great masters in the use of abstraction was the artist
Henri Matisse. While most artists prepare preliminary drawings for
their works, and then greatly expand these, Matisse worked the
opposite way: his preluninary drawings were extremely detailed. He
would have his assistant take photographs of his work each evening
when he had finished working, in order to keep a record of the
decisions he had made and the work he had completed. Next
morning he would destroy the work, undoing most (and, sometimes,
all) of what he had added the previous day. The result is that
Matisse’s preliminary drawings have a lot of detail, whereas the
final works are often very abstract, with very few lines, all of which
are essential to the representation. Perhaps most effectively this is
seen in his illustrations for James Joyce’s Ulysses (1935).’

I have ctlucy~ tried fo hide my own eforts ctnd wished my
works to haw fhe lighhriress and joyousmss of a springtiirie
which never lets aiyone suspect lhe Inhoios it cost.

- Flenri Matisse (1869-1954)

VII. Thou shalt not compromise thy
quality standards.

In 2002, the National Institute of Standards & Technology
(NIST) estimated that economic losses due to poor software quality
amounted to more than USS60 billion [34]. Thus the issue of
software quality is still a huge issue that has yet to be addressed
adequately. The I S 0 9000 family of quality standards have been in
force for a significant period now and were revised in 2000.

Standards are also especially important in high integrity areas
like safety-critical and security-critical applications. For example,
the IEC 61508-3 International Standard on software requirements
with regard to the functional safety of safety-related system covers
software design, development and verification [23]. Obviously

formal methods can be used as part of this process. However most
standards do not mandate formal methods, but rather suggest that
they could be used. The onus is, rightly, on the developer to
demonstrate that their use is sensible and worthwhile.

Other standards take even more consideration of formal methods
by mandating there use when appropriate. For example, in the UK,
the two-part Defence Standard 00-55 fiom the Ministry of Defence,
originally issued in 1991, was reissued in 1997 [32]. Part 1 on
“Requirements” states: “Assurance that the required safety integrity
has been achieved is provided by the use of formal methods in
conjunction with dynamic testing and static analysis.” In addition,
with regard to safety-related software (SRS): “The methods used in
the SRS development process shall include all of the following: a)
formal methods of software specification and design; ...” Part 2
provides “Guidance” with formal methods mentioned in many
places and an explicit section included under “Required methods”.

Safety and security standards continue to play an important
driving force in the use of formal methods, especially in the
associated guidance sections and at the highest levels of integrity. It
is likely that this will carry on for the foreseeable future.

[f people knew how hard I worked 10 get my master), i t

wouldn’l seem YO wonctrfiui LII d.
- Michelangelo Buonarroti (1475-1564)

VIII. Thou shalt not be dogmatic.

It is often erroneously claimed that formal methods can
guarantee correctness [6]. While formal methods can certainly offer
greater confidence that the software (or hardware) which has been
developed has been done so correctly, formal methods are no
absolute guarantee. In fact, it is absurd to speak of “comectness”
without reference to the system specification [6].

However, proving that a system is built “right” (verification) is
of extremely limited benefit if we’re not building the “right” system
(validation) [26]. McKenzie [30],[31] examined 1,100 or so deaths
where the cause of the death was attributed to be due to computer
error. It was determined that many of the errors were due to
specifications that were lacking, rather than that the specifications
were not correctly implemented.

There is a “gap” (sometimes called the Analysis-Specification
Gap) in going fiom what is in the mind of the procurer (expressed in
terms of real world entities) to a specification using the notations of
software professionals (whether formal or infomial). Because what
we term “formal methods” in fact offer very little or no
methodological support (with a few exceptions) [6], it has often
been suggested that less formal methods are preferable, or that
formal methods should be augmented with other methods that offer
greater development support andor are more intuitive to end-users
(cf. our discussion of the field of method integration under
Commandment I). Model-Based Development (Ml3D) aims to
address this by placing great emphasis on achieving an appropriate
model of reality (cf. Commandment V). And, as we mentioned
earlier (Commandment V), the field of Requirements-Based
Programming is attempting to fully integrate requirements in the
development process.

Matisse did not even read the book; he illustrated Homer’s
Odyssey instead.

5

And I am unanimous in that!
-Molly Sugden, a.k.a. Mrs. Slocombe

Are You Being Served? BBC TJ‘(1972-1993)

IX. Thou shalt test, test, and test again.

One of the most widely used results of early formal methods
research fkom the 1960s (before the term “formal methods” had
even been coined by the community) is the inclusion of assertions in
most professionally produced programs [21]. Originally these were
designed for proving programs correct. However they are now
normally used for testing purposes to check if a program’s state is
correct during runtime. There is now promising research based
around JML (Java Modeling Language) that allows assertions to be
used both for runtime checking and formal verification [27]. Even
M e r into the future, perhaps a ‘‘verifying compiler” will be able to
verify assertions at compile-time rather than runtime, thus helpful to
avoid the need to use them for testing [20].

For the nearer term, the use of formal methods to improve
testing seems increasingly promising. A formal specification can aid
in the automation of generating test cases. In may be that the time
required to produce a formal specification more than makes up the
time saved at the testing stage in this regard. In the UK, a
nationwide network, FORTEST (Formal Methods and Testing) has
been acting as a 6amework for investigations into the interplay
between these two aspects [4].

In addition, formal methods may be used to clarify testing
criteria. For example, the MCDC (Modified ConditionDecision
Coverage) criterion used in many safety-related applications, and
recommended by standards like the RTCADO-178B Sofiware
Considerations in Airborne Systems and Equipment Certification
standard, is normally defined informally, as in this standard. Its
meaning has been investigated formally using the Z notation and
developed further into an even stricter RCBC (Reinforced
Condition/ Decision Coverage) criterion [48].

Testing of software has particular problems because it is unique
in many senses [44]:

understand.
Even very short programs can be complex and difficult to

Software does not deteriorate with age. In fact, it may be
improved over time by the discovery and correction of latent
errors. However, new defects may be introduced during
changes to software.

Seemingly insignificant changes in software can result in
significant and unexpected problems in other (seemingly
unrelated) parts of the code.

While some hardware can give forewarnings of failure, this
is not the case with software. Many latent errors in software
may not be visible until long after the software has been
deployed.

A characteristic of software is the speed and ease with which
it can be changed.

This last point may give the incorrect impression that software
errors can easily be found and corrected. Rather, testing must be
augmented with other verification techniques, and a structured and

well-documented development approach must be combined to
ensure a comprehensive validation approach. However, we would
never, and have never, claimed that the use of formal methods can
eliminate the need for testing.

The FDA concludes [46]: “Because of its complexity, the
development process for software should be even more tightly
controlled than for hardware, in order to prevent problems that
cannot be easily detected later in the development process”, and that
“time is needed to fully define and develop reusable software code
and to fully understand the behavior of off-the-shelf components.”

I believe the hard part of building sofmare to be the
specifcation, design and testing of this conceptual
construcl, not the labor of representing it and testing the
fidelity of the representation.

- Frederick P. Brooks, Jr., No Silver Bullet

X. Thou shalt reuse.

Reuse has been promoted as a means of reducing costs and
achieving greater quality in software development (as greater eKort
can be justified on improving the quality of components that will be
reused). Object-oriented and component-based paradigm aim to
exploit this in developing complex software systems.

In theory, formal methods can and should aim in promoting
software reuse [25]. One of the inhibitors to the uptake of software
reuse has been the ability to identify suitable components in a
library, and to develop libraries of components that are sufficient
large to give a reasonable return, and yet small enough to be
reusable in a variety of situations. For some time it has been
recognized that searching can be made more effective by having
formal specifications of components, or at the very least of their
preconditions (which specify appropriate situations in which the
component may be applied) and postconditions (which specifies the
result of using the component). Supplied with such pre and
postconditions, the component may truly remain a “black box”,
which allows us to use larger components for which the payoff may
be more significant.

There are significant paybacks accruing to exploiting reuse at the
level of formal specifications rather than at the code level. Formal
specifications are typically shorter than their equivalent
implementation in a programming language (see Figure 2 for a
comparison of the potential size explosion as development proceeds
60m specification down through to implementation in ha rd~are) .~
As such, it is easier to search for components, while simultaneously
getting a sufficient return.

There are those researchers who argue that unless a formal
specification is significantly shorter than its implementation, it
is worthless. While this is a preferable and normal situation, if
the formal specification enables an insight that could not be
achieved at the programming language level, it is of great
benefit.

I 25 lines of informal requirements 3. CONCLUSION
I 250 lines o f (formal) specification -1
I 2,500 lines of design description

I 25,000 lines of high-level program code I
1 250,000 machine instructions of object code 1
I 2,500,000 transistors in hardware I

Oui, I’ouvre sort plus belle
D’une forme au travail
Rebelle,
Vers, marbre. onyx, Pmail.

v e s , the work comes out more beautiful fiom a material that
resists the process, verse, marble, onyx, or enamel.]

- ThCophile Gautier (181 1-1872) Liirf

Figure 2: The size explosion as development progresses.

Additionally, formal specifications may be used to generate
implementations on various platforms, reusing the effort expended
at the earlier stages of the development process, and reducing the
overall cost. In particular, success has been reported in applying
foimal specification techniques to developing product lines,
whereby a range of similar systems (or products) that have
significantly similar properties, with slight variations between them,
are implemented. Moreover, formal methods generally result in a
cleaner architecture [26], making a system more efficient and more
easily maintainable in die future.

However. care must be taken when reusing and porting software.
Ariane 5 is a prime example, where it was assumed that the same
launch software used in the prior version (Ariane 4) could be reused.
The result was the loss of the rocket within seconds of launch [29].

Similarly, the Therac-25 incidents are an interesting and relevant
example of, arguably, the most significant failure of software
assurance in the medical/biological field [38]. Therac-25 was a dual-
mode linear accelerator that could deliver either photons at 25 MeV
or electrons at various energy levels. It was based on Therac-20,
which in turn was based on the single-mode Therac-6. While
Therac-20 included hardware interlocks for safety, in Therac-25
these were software-based. Despite several Therac-25 machines
operating, reportedly correctly, for up to 4 years at various
installations in the US, 6 incidents occurred where the device gave
massive (and lethal) doses of radiation to patients.

Subsequent investigations discovered that “creative” setting of
parameters by students at a radiology school regularly resulted in
Therac-20 machines shutting down due to blown fuses and breakers.
In fact, in transpired that Therac-20 incorporated the same software
error as Therac-25, but what was merely a nuisance in Therac-20
(due to mechanical interlocks) was a fatal problem with Therac-25
[28]. The problem was “inherited” and exacerbated in Therac-25
[3 81.

The biggest diflerence between time and space is that you
can’t reuse time.

- Merrick Furst

Formal methods can have a great deal of impact on the software
development lifecycle. Unfomately, it is much easier to use formal
methods inappropriately than it is to apply them successfully, unless
a great deal of engineering skill and expert knowledge is used. All
members of the team must understand the applicability of formal
methods to a software project and contribute in ways that help
ensure success. It is only too easy for any member of a team,
whether on the management or technical side, or both, to prevent
their effective use.

Formal methods do require effort, expertise, and significant
knowledge, in order to be successfully applied. However the
rewards can be worthwhile if the right mix of people is available.
Not everyone in a team needs the same level of proficiency in the
application of formal methods, but all must have an appreciation of
their role. Lack of understanding will almost certainly result in
disaster. This is perhaps why formal methods are distrusted in some
quarters.

A traditional problem of formal methods has been their
overselling by some, especially in academia. They cannot solve all
problems and they are certainly not completely reliable since
humans, as well as mathematics, are involved and the logical models
must relate to the real world in an informal leap of faith, in any case,
both at the high-level requirements or specification end, and at the
low-level digital hardware end (where ultimately we must believe
Maxurell’s equations, for example!). Formal methods are not a
panacea, but rather they are a useful tool in reducing errors in
computer-based systems when applied sensibly, in cost-effective
ways, and for appropriate parts of the development.

There should be more effort to evaluate the effectiveness of
formal methods in the software development and maintenance
process. It is hoped that this paper suggests some issues for
consideration in future studies that we believe would be worthwhile.
Because of the somewhat tarnished reputation of formal methods,
largely due to misunderstandings and inappropriate use, a
demonstration of how and where formal methods are effective
would be well worthwhile. There are success stories in the industrial
use of formal methods. What are needed are studies that can help
practitioners understand how to ensure that the introduction of
formal methods has a positive impact on the software development
and maintenance process, by reducing overall costs.

While the use of formal methods has not developed as fast as it
might have done over the last ten years, it has not gone away either.
We believe that formal methods are not just a passing fad, but that
they will always have a niche in software development, especially
when it is critically important that the software functions coirectly
(e.g., for safety or security reasons). The use of software in such
applications is increasing as in many areas and fomial methods are
one of the available techniques that should be considered vely

carehlly. They should be applied in the parts of the software that
perform critical operations at a level that makes economic sense
using engineering judgment. For that, well-trained personnel of the
highest quality will always be needed.

For the next ten years, we see tool support for formal methods
as being of great importance. Industrial-strength tools for formal
methods have always been lacking. There are a few examples, such
as Atelier-B and PerfectDeveloper, but we need a range of such
tools, perhaps compatible using XML interchange formats for
example [47]. There are some efforts in this direction. E.g., see the
CZT Community Z Tools initiative [32] and the European RODIN
Project on Rigorous Open Development Environment for Complex
Systems based around B’ [13, a development of the B-Method. It is
hoped that such advances will make formal methods increasingly
easy to justify and use in an industrial environment.

.., in this area my academic colleagues are doing exactly
what they should do: developing and propagating an
indispensable technology so that it will be available when
“the world out there” undeniably needs it. [12]

- Edsger W. Dijkstra (193g2002)

ACKNOWLEDGMENTS
We are grateful to our many colleagues and fiiends who

provided us with valuable feedback and reactions to our original
paper. We would like to acknowledge the contributions of the
formal methods community as a whole, and thank the community
for providing us with material on which to base the original
commandments. We would particularly like to David Atkinson, Jin
Son Dong, Cliff Jones, Jim Rash, and Chris R o u e for providing us
with input and references for this paper.

Our special thanks go to Tiziana Margaria and Mieke Massink,
the FMICS 2005 Co-chairs, for inviting this paper to coincide with
the tenth anniversary of FMICS, and to Scott Hamilton of IEEE
Computer, for encouraging us to revisit the commandments ten
years on.

REFERENCES
[11 Abrial, J-R., B‘: Towards a Synthesis between B and Z. In

Bert, D., Bowen, J.P., King, S., and Waldkn, M., editors,
ZB2003: Formal Specifcation and Development in Z and B,
Third International Conference of B and Z Users, Turku,
Finland, June 2003., pp 168-177, Springer-Verlag, LNCS
2651,2003.

[2] Boiten, E.A., Derrick, J., and Smith, G., editors, Integrated
Formal Methods, 4th International Conference, IFM 2004,
Canterbury, UK, April 2004. Springer-Verlag, LNCS 2999,
2004.

[3] Bonnet, L., Florin, G., Duchien, L., Seinturier, L. A Method
for Specifying and Proving Distributed Cooperative
Algorithms. In Proc. DIMAS’95: Decentralized Intelligent and
Multi-agent Systems, Craww, Poland, 22-24 November 1995.

[4] Bowen, J.P., Bogdanov, K., Clark, J., Harman, M., Hierons R.,
and Krause P., FORTEST: Formal Methods and Testing. In
Proc. 26th Annual International Computer Software and
Applications Conference (COMPSAC 02), Oxford, UK, 26-29
August 2002, pp 91-101. IEEE Computer Society Press.

[5] Bowen, J.P. and Hinchey, M.G., Ten Commandments of
Formal Methods, Computer, 28(4):56-63, April 1995.
Reprinted in [7].

[6] Bowen, J.P. and Hinchey, M.G., Seven More Myths ofFornial
Methods, IEEE Sofhvare, 12(4):34-41, July 1995. Reprinted in

[7] Bowen, J.P. and Hinchey, M.G., editors, High-Integrity System
Specifcation and Design, Springer-Verlag FACIT Series,
London, 1999.

[SI Bowen, J.P. and Hinchey, M.G., Formal Methods. In Allen B.
Tucker, Jr., editor, Computer Science Handbook, 2nd edition,
Section XI, Software Engineering, Chapter 106, pp 106-1-
106-25, Chapman &Hall / CRC, ACM, 2004.

[9] Bowman, H., Steen, M.W.A., Boiten, E.A., andDerrick, J., A
Formal Framework for Viewpoint Consistency, Formal
Methods in System Design, 21(2):111-116, September 2002.

[lo] Clark, E.M., Wing, J.M., et ai., Formal Methods: State of the
Art and Future Directions. ACMComputing Surveys, 28(4):
626-643, 1996.

Design-by-contract Paradigm. In Redmill, F. and Anderson, T.,
editors, Practical Elements ojSafety: Proceedings ojthe 12th
SafepCritical Systems Symposium, Birmingham, UK, 17-1 9
February 2004, Chapter 2, Springer-Verlag.

Learning Formal Methods. Academic Press International
Series in Formal Methods, London, 1996.

131 Evans, A., France, R., Lano, K., and Rumpe, B., The Unified
Modeling Language. In Btzivin, J. and Muller, P-A,, editors,
UML ‘98: Beyond the Notation: First International Workshop,
Mulhouse, France, June 3-4, 1998, pp 336-348. Spinger-
Verlag, LNCS 1618, 1998.

141 Fischer, C. Combination and Implementation ojl‘rocesses and
Data: from CSP-OZ to Java. PhD Dissertation, Fachbereich
Infoimatik, Universicat Oldenburg, Germany. 2000.

[I51 Galloway, A.J. and Stoddart, W.J. An operational semantics for
ZCCS. In M. Hinchey and S. Liu, editors, Proc. IEEE
International conference on Formal Engineering Methods
(ICFEM97), pp 272-282, Hiroshima, Japan, November 1997,
IEEE Computer Society Press.

7(5): 11-19, September 1990. Reprinted in [7].

Formal Methods, Prentice Hall International Series in
Computer Science, Hemel Hempstead, UK and Englewood
Cliffs, NJ, 1995.

[181 Hinchey, M.G. and Bowen, J.P., editors, Industrial-Strength
Formal Methods in Practice, Springer-Verlag FACIT Series,
London, 1999.

Proof? In Proceedings of the Third International Symposium of
Formal Methods Europe on Industrial Benejt and Advances in
Formal Methods, pp 1-17. Springer-Verlag, LNCS 1051,
1996.

[71.

[l l] Crocker, D., Safe Object-Oriented Software: The Verified

[12] Dean, C.N. and Hinchey, M.G., editors, Teaching arid

[16] Hall, J.A., Seven Myths of Formal Methods, IEEE Sofhvare,

[17] Hinchey, M.G. and Bowen, J.P., editors, Applications o j

[19] Hoare, C.A.R., How did Software get so Reliable without

[20] Hoare, C.A.R., The VeriQing Compiler: A Grand Challenge
for Computing Research. Journal of the ACM 50(1):6349,
January 2003.

Annals of the Histoly of Computing, 25(2):14-25, April-June
2003.

Methods, In Proc. 16" Annual Digital Avionics Systems
Conference, October 1997; also available as NASA Langley
Research Center Technical Report number 290694, 1997.

Programmable Electronic safety-related systems, Part 3:
Software Requirements, IEC 61508-3 International Standard,
1998.

[2 I] Hoare, C.A.R., Assertions: A Personal Perspective. IEEE

[22] Holloway, C.M., Why Engineers Should Consider Formal

[23] IEC, Functional Safety of Electrical/Electronic/

[24] ISOAEC, Information Technology - Z Formal Specification
Notation - Syntax, Type System and Semantics, IS0
13568:2002 International Standard, 2002.

Development of Reusable, Domain-specific Components, for
Complex Applications. In Jurgens, J. and France, R., editors,
Proceedings of 3rd International Workshop on Critical
Systems Development wifh UML, pp 115-129, Lisbon, 2004.

[26] Jones, C.B., Keynote Speech, In Proc. lUh IEEE International
Conference on Engineering of Complex Computer Systems
(rCECCS 2005), Shanghai, China, 16-20 June, 2005, IEEE
Computer Society Press.

E271 Leavens, G.T., Cheon, Y., Clifton, C., Ruby, C., Cok,D.R.,
How the Design of JML Accommodates both Runtime
Assertion Checking and Formal Verification. Science of
Compuzer Programming, 55(1-3):185-208, March 2005.

[28] Leveson, N. and Turner, C.S., An Investigation of the Therac-
25 Accidents, Computer, 26(7):1841, July 1993.

[29] Lyons J.L., Ariane 5: Flight 501 Failure, Report by the Inquiry
Board, 19 July 1996.

[30] MacKenzie, D., Computer-Related Accidental Death: An
Empirical Exploration, Science and Public Policy, 21:233-
248, 1994.

[3 I] MacKenzie, D., Mechanizing ProoJ Computing, Risk and
Trust, MlT Press, Cambridge, MA, 2001.

[32] Malik, P. and Utting, M., CZT A Framework for Z Tools. In
Treherne, H., King, S., Henson, M., and Schneider, S . , editors,
ZB2005: Formal Specification and Development in Z and B,
4th International Conference of B and Z Users, Guildford, UK,
April 2005., pp 65-84, Springer-Verlag, LNCS 3455,2002.

[33] MOD, Requirement for Safety Related Sofmare in Defence
Equipment, Def Stan 00-55Assue 2, Ministry of Defence, UK,
1 August 1997. Part 1: Requirements, Part 2: Guidance.

[34] National Institute of Standards and Technology, The Economic
Impact of Inadequate Infastructure for Software Testing,
Planning Report 02-3, May 2002.

[35] Pamas, D.L., Software Aspects for Strategic Defense Systems.
American Scientist, November 1985.

[25] Johnson, I., Snook, C., Edmunds, A., and Butler, M., Rigorous

[36] Pressman, R.S., Soffware Engineering: A Practitioner's
Approach, 6" edition. McGraw-Hill International Edition,
2004.

[37] Rash, J.L., Hinchey, M.G., Gratanin, D., and Rouff, C.A., An
Approach to Generating and Verifying Complex Scripts and
Procedures. In "Controlling Complexity" workshop, Proc.
Computational Sciences Bioinformatics 2005 Workshops, 1 I
August 2005, Stanford University, USA, IEEE Computer
Society Press.

[38] Rawlinson, J.A., Report on the Therac-25,OCTRF/OCI
Physicist's Meeting, Kingston, Ontario, Canada, 7 May 1987.

[39] Saiedian, H., editor, An Invitation to Formal Methods. IEEE
Computer 29(4): 1630, April 1996.

[40] Semmens, L.T., France, R.B., andDocker, T.W.G., Integrated
Structured Analysis and Formal Specification Techniques. The
Computer Journal 35(6):600-610, 1992.

[41] Shape, R., Formal Methods Start to Add up Again,
Computing, 301,s January 2004.
http://www.computing.co.uk/features/ll5 1896

[42] Smith, G., 7he Object-Z Specifcation Language. Kluwer
Advances in Fomal Methods Series, Boston, 2000.

[43] Snook, C. and Butler, M., U2B - A tool for translating UML-B
models into B. In Mermet, J., editor, U M - B Specification for
Proven Embedded Systems Design, chapter 6. Springer-Verlag,
2004.

[44] Sterritt, R. and Hinchey, M.G., Why Computer-Based Systems
Should be Autonomic. In Proc. 12' IEEE International
Conference on Engineering Computer-Based Systems (ECBS
2005), Greenbelt, MD, USA, 4-7 April 2005, pp 406-412,
IEEE Computer Society Press.

[45] Taguchi, K., Dong, J.S., and Ciobanu, G. Relating rr-calculus
to Object-Z. In Proc. 9" International Conference on
Engineering of Complex Computer Systems ("CECCS 2004),
Florence, Italy, April 2004.

[46] United States Department of Health and Human Services, Food
and Drug Administration, General Principles of Software
Validation: Final Guidance for Industry and FDA Stax 1 1
January 2002.

and Currie, D., ZML: XML Support for Standard Z. In Bert,
D., Bowen, J.P., King, S., and WaldCn, M., editors, ZB2003:
Formal Specification and Development in Z and B, Third
International Conference ofB and Z Users, Turku, Finland,
June 2003., pp 437-456, Springer-Verlag, LNCS 2651,2003.

[48] Vilkomir, S. and Bowen, J.P., Reinforced Condition/ Decision
Coverage (RCDC): A New Criterion for Software Testing. In
Bert, D., Bowen, J.P., Henson, M.C., and Robinson. K.,
editors, ZB2002: Formal Specification and Development in Z
and B, Second International Conference of B and Z Users,
Grenoble, France, 23-25 January 2002., pp 295-313, Springer-
Verlag, LNCS 2272,2002.

[47] Utting, M. Toyn, I., Sun, J., Martin, A., Dong, J.S., Daley, N.,

